N ov 2 00 6 Abelian Conformal Field Theory and Determinant Bundles

نویسنده

  • Kenji Ueno
چکیده

Following [KNTY] we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [TUY] and [U2]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are up to a scale the same as the curvature of the connections constructed in [TUY] and [U2]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near nodal curves. These results are used in [AU2] to construct modular functors form the conformal field theories given in [TUY] and [U2] by twisting with an appropriate factional power of this Abelian theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A / 0 30 41 35 v 2 8 N ov 2 00 6 Abelian Conformal Field Theory and Determinant Bundles ∗

Following [KNTY] we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [TUY] and [U2]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are up to a scale the same as the curvature of the connections constructed in [TUY] and [U2]. We...

متن کامل

ar X iv : m at h . D G / 0 30 62 35 v 2 8 N ov 2 00 6 GEOMETRIC CONSTRUCTION OF MODULAR FUNCTORS FROM CONFORMAL FIELD THEORY

We give a geometric construct of a modular functor for any simple Lie-algebra and any level by twisting the constructions in [16] and [19] by a certain fractional power of the abelian theory first considered in [13] and further studied in [2].

متن کامل

ar X iv : m at h / 03 06 23 5 v 2 [ m at h . D G ] 8 N ov 2 00 6 GEOMETRIC CONSTRUCTION OF MODULAR FUNCTORS FROM CONFORMAL FIELD

We give a geometric construct of a modular functor for any simple Lie-algebra and any level by twisting the constructions in [16] and [19] by a certain fractional power of the abelian theory first considered in [13] and further studied in [2].

متن کامل

ar X iv : h ep - t h / 01 11 18 6 v 1 2 1 N ov 2 00 1 1 Dynamical Zero Modes and Criticality in Continuous Light Cone Quantization of Φ 41 + 1

Critical behaviour of the 2D scalar field theory in the LC framework is reviewed. The notion of dynamical zero modes is introduced and shown to lead to a non trivial covariant dispersion relation only for Continuous LC Quantization (CLCQ). The critical exponent η is found to be governed by the behaviour of the infinite volume limit under conformal transformations properties preserving the local...

متن کامل

N ov 2 00 4 The hybrid spectral problem and Robin boundary conditions

The hybrid spectral problem where the field satisfies Dirichlet conditions (D) on part of the boundary of the relevant domain and Neumann (N) on the remainder is discussed in simple terms. A conjecture for the C 1 coefficient is presented and the conformal determinant on a 2-disc, where the D and N regions are semicircles , is derived. Comments on higher coefficients are made. A separable hemis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006